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In this paper, we propose a multiscale finite-strain plate theory for a composite nonlinear
plate described by a repetitive periodic heterogeneity. We consider two scales, the macro-
scopic scale is linked to the entire plate and the microscopic scale is linked to the size of
the heterogeneity. At the macroscopic scale, we approximate the displacement field by the
Reissner-Mindlin model. By considering the equivalence between variations of the macro-
scopic elastic energy at each point of the mid surface and the microscopic one, we deduce
that the macroscopic stress resultants can be expressed in terms of the microscopic stress.
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1. Introduction

Composite plates are widely used in aeronautics applications because they offer the excellent
ratio between stiffness or strength performance and weight. The size of fine scale details in such
heterogeneous plates is typically much smaller compared to dimensions of the structure. Thus
the making of direct numerical analyses is prohibitively expensive. To avoid large-scale com-
putations, it is preferable to model the plates at the macroscale as a homogeneous continuum
with effective properties obtained through a homogenization procedure. Based on asymptotic
homogenization concepts, Caillerie (1984), Kohn and Vogelius (1984) discussed homogeniza-
tion of heterogeneous periodic linear elastic plates. Their models are mathematically elegant
and rigorous but only related to a simple engineering model (the Kirchhoff plate model). The
Kirchhoff-Love plate model is the simplest and the most widely-used theory. Nevertheless, this
model neglects contribution of out-of-plane stress components to stress energy. However, when
the plate slenderness ratio L/h (h is plate thickness and L is characteristic dimension of its
mid-plane) decreases, out-of-plane stresses have an increasing influence on the plate deflection.
Exactly as Cecchi and Sab (2007) did for Reissner-Mindlin homogenization of periodic pla-
tes, Lebée and Sab (2012) proposed a homogenization theory for their bending gradient theory
(Lebée and Sab, 2011). That approach corrected the homogenization theory of Lewiński (1991),
Caillerie (1984), Kohn and Vogelius (1984) in order to take into account of out-of-plane stress
components (transverse shearing and transverse normal stress). So, they used implicitly the
superposition principle and then limited their theories to linear elasticity.
The study of Petracca et al. (2017) focused on periodic brick-masonry walls. The macro-scale

behavior obeys the Reissner-Mindlin model and the local heterogeneous structures is assumed to
be transverse isotropic. For the macroscopic Reissner-Mindlin plate model, Terada et al. (2017)
proposed a new numerical plate testing (NPT) by adding a specific microscopic displacement
terms such that the out-of-plane microscopic shear strain components contained the macroscopic
curvature associated with torsional deformation.
The method of homogenization proposed by Lee et al. (2014) is deduced from the intro-

duction of the double scale asympytotic expansion method into a new double scale variational
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formulation. The developments given by this method are valid for the macro-scale Reissner-
-Mindlin behavior and restricted to small deformations and large rotations and displacements.
As a consequence, this approach seems to be intractable in the fully nonlinear setting. This is
due to fact that simplification linked to the application of the variational-asymptotic method
(Berdichevskii, 1979; Sutyrin, 1997) runs only under the small deformation assumption. More-
over, the recent extension of the asymptotic expansion for homogenization of the plate made of
a nonlinear Saint Venant-Kirchoff material proposed by Kalamkarov et al. (2017) seems to be
restricted to bending and stretching.
This paper concerns the modeling of the mechanical response of heterogeneous plate struc-

tures. The macroscopic displacement field is assumed to be of the Reissner-Mindlin type. So, we
avoid the Saint Venant-Kirchoff asumption considerd in Coenen et al. (2010), Cong et al. (2015).
The mechanical behaviour of the constituents of the plate is of a nonlinear hyperelastic type.
Then, it is necessary to define the relation between the definitions of the macroscopic generalized
strains and stresses for a plate continuum in terms of the microscopic ones. This macro-to-micro
scale transition is performed by imposing the macroscopic generalized deformation gradient on
the RVE (representative volume element) through essential boundary conditions that may be
periodic conditions. Upon solution of the microstructural boundary value problem, the macro-
scopic generalized stress resultants are expressed by averaging the computed RVE stress field
through the use of a generalised Hill-Mandel condition for shells (i.e. an energy condition where
the energy in the macroscale is equal to the one in the microscale). In our work, the through
thickness dimension is directly combined with the in-plane homogenization.

2. Two scales description of a heterogeneous plate

Let us denote by (e1, e2, e3) the canonical orthonormal bases of R
3. In the plane (O, e1, e2),

the domain defines the mid-plane of the plate. Then, we denote by x′ = (x1, x2) the cartesian
coordinate of a point of the mid-plane which also defines the macro-scale of the plate. So, the size
of its mid-plane defines the global length-scale. This plate is heterogeneous and we assume that
the microstructure of the plate is repetitive periodic in the mid-plane. This microstructure is
defined at the microscopic scale y and it is sufficient to define the distribution of the constituents
on the smallest period or unit cell as follows

Y =
{
y = (y1, y2, y3); y

′ = (y1, y2) ∈ Y
′ = [0, a] × [0, b],−

h

2
¬ y3 ¬

h

2

}
(2.1)

The size of heterogeneities, which is assumed to be of the same order of magnitude of thick-
ness h, is very small with regard to the global length-scale l. The plate is formed by an integer
number of the unit cell. Both the upper and lower boundaries of the plate can be defined in
microscopic coordinates y: ∂Y± = {(y′,±h/2)}. The lateral boundary ∂ω ×Y is split into two
parts, the first one ∂ωt̄× [−h/2, h/2] is subjected to the surface force t̄(x

′, y3) and on the second
one ∂ωx̄ × [−h/2, h/2], the current position vector x̃(x

′,y3) is prescribed by x(x
′, y3).

The load acting on both the upper and lower boundary of the plate (t
±
(x′,y′)) and the body

forces (f(x′,y)) are periodic in y′.

3. Nonlinear homogenization by using the Hill-Mandel macro-micro concept

3.1. Homogeneous plate model

We consider a Reissner-Mindlin model, then the current macroscopic position is approxima-
ted in the form

x̃α(x
′, y3) = x̃

(0)
α (x

′) + y3x̃
(1)
α (x

′) x̃3(x
′, y3) = y3 + x̃

(0)
3 (x

′) (3.1)
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Accordingly, the deformation gradient F is defined by

Fαβ(x
′, y3) = x̃

(0)
α,β(x

′) + y3x̃
(1)
α,β(x

′)

Fα3(x
′, y3) = x̃

(1)
α (x

′) F3α(x
′, y3) = x̃

(0)
3,α(x

′) F33(x
′, y3) = 1

(3.2)

Greek indices take value 1 or 2, and we use the notation u,α = ∂u/∂xα.
For a hyperelastic material with strain energy function W (F), the first Piola-Kirchoff strain

tensor is defined by

π =
∂W

∂F
(3.3)

In the case of dead loading, the potential energy is given by

E = Ψ − V (3.4)

in which Ψ is the internal energy

Ψ =

h

2∫

−
h

2

∫

ω

W (F) dx′ dy3

V is the work of exterior forces

V =

h

2∫

−
h

2

∫

ω

fM · x̃ dx′ dy3 +

∫

ω

tM±
(
x′,±
h

2

)
· x̃
(
x′,±
h

2

)
dx′ +

h

2∫

−
h

2

∫

∂ω
t

t · x̃ ds dy3

and s is the curvilinear coordinate along ∂ω with

fM (x′, y3) =
1

|Y′|

∫

Y′

f(x′,y) dy′ tM±(x′) =
1

|Y′|

∫

Y′

tM±(x′,y′) dx′

Remark: On the global macroscale, we consider the effect of the load on both upper and lower
faces of the plate and the body forces in similar fashion as in the asymptotic analysis
proposed by Lewiński (1991). Nevertheless, since the result is formal, we can also consider
a model for which the load acts on the unit cell Y linked to the local microscopic scale.
And then the load acts indirectly on the macroscopic through the local scale (Pruchnicki,
2019b).

The principle of stationary potential energy requires that the variation of the potential energy
vanishes

δE =

h

2∫

−
h

2

∫

ω

π : δF dx′ dy3−

h

2∫

−
h

2

∫

ω

fM ·δx̃ dx′ dy3−

∫

ω

tM±(x′)·δx̃ dx′−

h

2∫

−
h

2

∫

∂ω
t

t·δx̃ ds dy3 = 0

(3.5)

By inserting (3.1) and (3.2) the potential energy becomes

δE =

∫

ω

δEM dx
′ −

∫

ω

fM0 · δx̃(0) dx′ −

∫

ω

fM1α δx̃
(1)
α dx

′ −

∫

ω

tM± · δx̃(0) dx′

−
h

2

∫

ω

tM±α δx̃
(1)
α dx

′ −

∫

∂ω
t

n · δx̃(0) ds−

∫

∂ω
t

mαδx̃
(1)
α ds = 0

(3.6)
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in which the variation of the elastic energy at each point of the plate is

δEM = Nαβδx̃
(0)
α,β +N3αδx̃

(0)
3,α +Nα3δx̃

(1)
α +Mαβδx̃

(1)
α,β (3.7)

with

N =

h

2∫

−
h

2

π dy3 Mαβ =

h

2∫

−
h

2

παβy3 dy3

fMi =

h

2∫

−
h

2

fMyi3 dy3 for i = 0, 1

n =

h

2∫

−
h

2

t dy3 m =

h

2∫

−
h

2

ty3 dy3

(3.8)

The strong form of variational formulation (3.6) is

div x′N+ f
′M0 + tM± = 0 Mαβ,β +Nα3 + f

M1
α + t

M±
α = 0 in ω

N · ν = n Mαβνβ = mα on ∂ωt

x̃(0)(x′) = x(x′, 0) x̃(1)α (x
′) = x[1]α (x

′, 0) on ∂ωx

where ν is the exterior unit normal on ∂ω.
We assume that x(x′, y3) is C

1 in y3, then we consider a Taylor expansion of the prescri-
bed current position up to the first order: x(x′, y3) = x(x

′, 0) + x[1](x′, 0)y3 + O(y
2
3) in which

x[1] = ∂x/∂y3.

3.2. The transition law between macroscopic and microscopic scales and the microscopic

problem

We assume that the microscopic deformation gradient can be expressed in terms of the
macroscopic displacement gradient F and the microscopic current position xm

Fm(x′,y) = F(x′, y3) + F
y(xm(x′,y)) (3.9)

in which

Fy(xm(x′,y)) =
∂xm(x′,y)

∂yi
⊗ ei = x

m
ji(x

′,y) ⊗ ei

in which the symbol ⊗ denotes tensorial product.
Thus the microscopic first Piola-Kirchoff tensor is given by

π
m =
∂W (Fm)

∂Fm
(3.10)

The equilibrium equation on the unit cell Y is

πmij;j = 0 in Y (3.11)

The Neumann boundary conditions on both the upper and lower boundaries of the RVE are

πmi3 = 0 on ∂Y± (3.12)
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Due to mid-plane periodicity of the heterogeneity, we can impose the periodicity of πm and xm

on ∂Y′ × [−h/2, h/2] (lateral boundary of the unit cell).
So the microscopic problem is defined by (3.11) and (3.12) and the periodicity condition

of πm and xm on ∂Y′ × [−h/2, h/2]. In addition to this periodicity condition, we can impose
〈xm〉 = 0 in order to prevent rigid displacement.
For the out-of-plane shear mode (F13 6= 0 or F31 6= 0 or F23 6= 0 or F32 6= 0), the solutions

to microscopic equilibrium problems (3.11) and (3.12) are indeterminate because the constraint
conditions provided earlier for the microscopic displacement are not sufficient to prevent rigid
body rotations of an in-plane unit cell (Geers et al., 2007; Petracca et al., 2017). To avoid rigid
body rotations in imposing out-of-plane shear deformations, the following constraint conditions
seem to be effective (Petracca et al., 2017)

〈y3w1〉 = 0 when F13 6= 0 or F31 6= 0

〈y3w2〉 = 0 when F23 6= 0 or F32 6= 0

Now we consider an equivalence between the variation of both the macroscopic and the
microscopic elastic energy

δEM =
1

|Y′|

∫

Y

π
m : δF dy (3.13)

Equivalence condition (3.13) implies that we can define N, Mαβ , Eqs. (3.8), in terms of the
microscopic stress field

N =
1

|Y′|

∫

Y

π
m dy Mαβ =

1

|Y′|

∫

Y

π
my3 dy (3.14)

We can observe that, as in Cong et al. (2015), we can define the relation between the ma-
croscopic (π) and the microscopic first Piola-Kirchhoff (πm) tensors as follows

π =
1

|Y′|

∫

Y

π
m dy′ (3.15)

Then, from (3.15) and (3.8), we deduce (3.14).

4. Conclusion and discussion

We have presented in this work a multiscale theory for simulating the mechanical response of
a highly heterogeneous plate based on the concept of computational homogenization. The con-
cept has been described in terms of structural description of both microscopic and macroscopic
scales and the resulting boundary value problems. A similar approach was presented and tested
numerically with success in Cong et al. (2015) and Terada et al. (2017). The macroscopic gene-
ralized strain and the macroscopic generalized resultant stress are deduced so as to satisfy the
macrohomogeneity or the Hill-Mandel condition in the sense that the local strain energy density
in a homogenized thick plate must be the same as the volume average of the strain energy over
an in-plane unit cell. Nevertheless, it is not a rigiourous mathematical argument, then this type
of model can be only validated by numerical computation. For the homogeneous plate model
(macroscopic behavior of the plate), we can also consider a more generalized shear deformable
plate model recently introduced by Polizzotto (2018). This family of plate models spans from
the Kirchhoff plate to the Reissner-Mindlin ones. For the sake of simplicity, we have considered
in this work the Reissner-Mindlin plate model.
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Another way for solving this type of problem is firstly to propose a two-scale expression
of the potential energy (Lewiński, 1991; Lee et al., 2014). But this problem is more complex
that the initial scale problem, and so to the author’s knowledge there exist two possibilities for
solving it in a tractable way. The first one is the formal asymptotic expansion method used
by Lewiński (1991). The second one is the variational asymptotic method proposed by Sutyrin
(1997), Berdichevskii (1979) and Lee et al. (2014). Anyway it will seem to be difficult to extend
this approach in nonlinear setting. Rigourous Γ -convergence is not established for every formal
result, and when it can be established, additional assumptions are generally necessary.

The problem of homogenization of the heterogeneous plate couples two problems. The first
one is reduction of the initial three dimensional problem to a two dimensional one, and the second
one is the homogenization of the heterogeneous structure. So, we can simplify the problem by
considering only the reduction problem without considering the concept of homogenization.
For the homogeneous plate, this problem is successfully addressed by truncation of the elastic
potential (Schneider et al., 2014), and for the heterogeneous plate by Pruchnicki (2019b).
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